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An Unusually Facile Bridgehead Enolization. Locked 
Boat Forms in Anti-Bredt Olefins1 

Sir: 

Exchange of hydrogens via bridgehead enolates ordinari­
ly requires vigorous alkaline treatment when the ketonic 
rings are not large. For example, in copacamphor (1) and in 
e/»-17-norkauran-16-one (2), the indicated bridgeheads un­
derwent exchange in the presence of very strong base (KO-
/-Bu) at high temperatures (185° for I2 and 172° for 23). 

H(D) 

H(D) 

The bridgehead enolates in each of these ketones involves a 
transoid double bond in a seven-membered ring. We wish to 
report a remarkably easy bridgehead exchange at C-3 in 
brendan-2-one (3), in which the corresponding anti-Bredt 
enolate also contains a transoid olefin in a seven-membered 
ring. 

Brendan-2-one (3)4 in CH3OD containing NaOCH 3 in­
corporates deuterium at 25°. Table I, which summarizes 
three separate exchanges that differed only in the base/ke-
tone ratio, reveals uptake of one deuterium and no multiple 
deuteration under this mild treatment. That the deuterium 
is virtually entirely at C-3 (see 4) was established with the 
europium-shifted nmr of the ketone-c? from run 3 (92% 

Table I. Deuterium Incorporation by 
Brendan-2-one in CH3OD-NaOCH3 at 25° 

Run 
Time 

(hr) 

.—Molar concn—-
NaO- Ke-
CH3 tone 

Mass spectral d Assay 
. (rel % ±1) . 

do di di 

69 
69 
69 

0.82 
1.70 
4.84 

0.44 
0.42 
0.50 

67 
12 
33 
92 

0 
0 
0 

d\).5 Integration indicated 7% H at C-3 (therefore 93% D), 
thus accounting for all the deuterium. 

The reason why bridgehead replacement occurs so readi­
ly in 3 is of considerable interest especially as the mild con­
ditions are more typical of those used for ordinary enoliza-
tions. The " s " character6 of the carbon in the bridgehead 
C-H together with inductive stabilization of the carbanion 
by the carbonyl7 cannot entirely account for the enhanced 
acidity because no deuteration occurred at the C-I bridge­
head and because the C-3 hydrogen does not undergo ready 
exchange when the carbonyl is located at C-4. Thus we 
found that brendan-4-one (5)4 at room temperature in 
MeOD-NaOMe exchanged only its two enolizable protons 
at C-5 (1% d0, 11% d\, 88% d2) under conditions close to 
those of run 3. The amount of double bond character in the 
bridgehead enolate from 3 is surely a dominant factor, and 
yet its extent is surprising for the ring sizes involved in this 
anti-Bredt situation.8 

Wiseman has noted that a bridgehead double bond is en-
docyclic to two rings and necessarily transoid in one of 
them, and that bridgehead strain should be related to the 
strain in the transoid cycloalkene.9 Brendan-2-one and its 
isomer noradamantan-2-one (7)10 provide a direct way to 
test this view because a 2,3-olefin is transoid in the seven-
membered ring if the cyclohexanone is a locked boat, as in 
brendan-2-one (see perspective 6), whereas it is transoid in 
the six-membered ring if the cyclohexanone is rigidly chair 
locked as in noradamantan-2-one ( 7 ) . l u 2 Indeed we found 
that 7 requires much more vigorous treatment to replace 
any of its hydrogens. Table II shows that even with KO-?-
Bu a temperature around 80-87° was needed to abstract 
the first hydrogen. Interestingly, even after 69 hr at 140° 
(run 5), the ketone remains largely monodeuterated with 
only 5% polydeuteration, although at still higher tempera­
tures extensive multideuteration sets in due to homoenoliza-
tion13 at various sites.14 

From Eu(fod)3-shifted nmr,5 it was qualitatively clear 
that the first replacement in noradamantan-2-one occurs at 
C-3, but a quantitative assay was best done on the shifted 
nmr of epinoradamantanol10 obtained by LJAIH4 reduction 
of the exchanged ketone. For example, in the alcohol de­
rived from run 5, nmr integration indicated 10% H at C-3 

Table II. Deuterium Incorporation by Noradamantan-2-one with KO-Z-Bu in r-BuOD 

Run 

1 
2 
3 
4 
5 
6 
7 

Temp 
(±3 'C) 

80 
87 

120 
118 
140 
160 
195 

Time 
(hr) 

48 
69 
69 

185 
69 
69 
50 

Molar concn 
KO-f-Bu Ketone 

-Mass spectral d assay (rel % ±1)-
di d% d3 dt 

0.20 
0.84 
0.84 
0.84 
0.84 
0.84 
0.64 

0.10 
0.24 
0.23 
0.24 
0.23 
0.24 
0.32 

100 
97 
69 
33 
9 
5 
5 

3 
30 
64 
86 
59 
39 

1 
3 
4 

21 
29 

1 
14 
24 
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(therefore 90% D). If we assume, reasonably, that the d2 

and di species contain one of their deuteriums at C-3, the 
total at C-3 should be 91% D (i.e., 86 + 4 + 1), which 
agrees closely with the nmr integration.15 

The ready bridgehead exchange in brendan-2-one is not 
paralleled in its bicyclic analog, bicyclo[3.2.1]octan-2-one 
(8), in which the ketonic ring is conformationally more 
flexible. Thus ketone 8 exchanged virtually only its two eno-
lizable protons (3% d0, 24% d\, 72% d2, 1% di), when 
treated with NaOCH 3 under the conditions of run 3, Table 
I. Use of KO-?-Bu-/-BuOD at 40° gave closely similar in­
corporation, and, even at 170° with KOD in 1:1 D^O-diox-
ane, the recovered ketone showed very little uptake beyond 
di (0% do, 10% du 87% d2, 2% d3, 1% d4).

]6 

The unusual ease of bridgehead replacement in 3 and its 
relative difficulty in 7 and 8 demonstrate that the bridged 
boat form markedly enhances enolate stability at the side of 
the boat (but not at the bow) and that this stabilization is 
diminished considerably in a locked chair form. Our results 
imply that boat-locked substrates might be used to advan­
tage in pursuit of certain anti-Bredt olefins.17 The findings 
also raise the interesting possibility that prior to enolization 
of equatorial hydrogens, ordinary cyclohexanones may pre­
fer to change to boat-like shapes to improve initial stereoe-
lectronic alignment. We are pursuing some of these sug­
gested lines. 
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Trapping of Intermediates in Singlet Oxygen 
Reactions. Cleavage of Dioxetanes by 
Diphenyl Sulfide 

Sir: 

Recent investigations on the mechanisms of singlet oxy­
gen reactions with acceptors have made use of various trap­
ping agents to intercept peroxidic intermediates.1 '4 Among 
these, diphenyl sulfide (a species unreactive toward '02) 
has been used effectively to bring about monodeoxygena-
tion of persulfoxides formed in the sensitized photooxida-
tion of alkyl sulfides.1 We now report that diphenyl sulfide 
(DPS) may be used as a trapping agent to intercept dioxe­
tanes formed in the reactions of singlet oxygen with certain 
electron-rich ethylenic and heterocyclic systems. 

Methylene Blue-sensitized photooxidation of m-d i -
methoxystilbene (1) (625-W Sylvania "Sun Gun") (0.005 
M) in ether-methanol (85:15) in the presence of excess 
DPS (0.02 M) yielded methyl benzoate (32%) benzil di­
methyl ketal (2)5 (18%), and diphenyl sulfoxide (35%).6 In 
the absence of DPS, we have found as has been reported 
earlier,7'9 that reaction of 1 with singlet oxygen under the 
same conditions yields only the dioxetane (3) and its cleav­
age product, methyl benzoate. 

We suggest that the formation of the rearrangement 
product (2), in the presence of DPS, takes place by a nu-
cleophilic attack of the sulfide on the intermediate dioxe­
tane (3) with cleavage of the oxygen-oxygen bond.8 The 
zwitterion (4) thus formed then undergoes a benzylic acid­
like rearrangement as shown.10-" This explanation receives 
strong support from a control experiment in which the diox­
etane (3), isolated in pure form,9 was treated with DPS at 
room temperature in ether-CD30D. The resulting mixture 
of products contained 2 (21%), diphenyl sulfoxide (32%), 
and methyl benzoate (43%). No incorporation of OCD3 

from the solvent was observed. In benzene, 3 reacted at a 
much slower rate with DPS to give the same products. 

Ph Ph Ph Ph 
'O5 \ / DPS X X 

MeO OMe 

Ph Y ^ 1 Ph 
MeO OMe MeOO-OOMe /"n Vn—SPh 

1 3 U 
0 Vo 

2PhCOOMe I 
PhCO-C / 

OMe 

"OMe 
2 Ph 

+ 

Ph 2 S-O 

The effect of DPS on the photosensitized oxygenation of 
2,3-diphenyl-p-dioxene (5) was next investigated. In the ab­
sence of trapping agent, this oxidation yields the 1,2-dioxe-
tane (6) which cleaves to form the dibenzoate of ethylene 
glycol (7).7 '12 Photooxidation of 5 (0.02 M) in moist metha­
nol (Methylene Blue) in the presence of DPS (0.16 M) 
yielded the trans-g\yco\ 8 1 3 J 4 (40%) and diphenyl sulfoxide 
(47%) along with the cleavage product 7 (18%). As the con­
centration of DPS was increased the ratio of 7 to 8 marked­
ly decreased, as shown in Table I.26 Using benzene as sol­
vent, bisacenaphthalenethiophene as sensitizer, and DPS 
(0.05 M) as oxygen scavenger, the products formed were 
benzil ethylene ketal (9) (8%), epoxide (10) (19%), 7 
(24%), and diphenyl sulfoxide (39%). Formation of prod­
ucts 8, 9, and 10 is shown in Scheme I.14-27 

Diphenyl sulfide does not cause monodeoxygenation of 
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